Clostridium perfringens group infections

Clostridium perfringens group infections

General introduction

Clostridium perfringens, previously referred to as Clostridium welchii, was first described in 1891 by Achalme as the Bacillus of Acute Articular Rheumatism.79 In the historical literature it was also known by names such as Bacillus phlegmonis emphysematosae, Bacillus emphysematis vaginae, Bacillus cadaveris butyricus, Bacillus aerogenes capsulatus, Granulobacillus saccharobutyricus liquefaciens immobilis, and as Bacillus perfringens.79, 82

Clostridium perfringens is a typical representative of the genus Clostridium which requires anaerobic growth conditions. It is widely distributed in nature and occurs in soil, sewage and water, as well as in the intestinal tract of humans and warm-blooded animals. Clostridium perfringens is absent from the stomach, but present in small numbers (vegetative bacteria and spores) in the small and large intestines of most animal species. Vegetative organisms may multiply in soil,81 and counts as high as 5 × 104 C. perfringens organisms per gram of soil have been recorded.81, 99 Normal human intestinal contents can contain as many as 109 organisms per gram,1 the number being dependent on the diet of the host.2, 96 In pigs fed on a high protein diet, the number of C. perfringens is significantly higher than in pigs on a standard protein diet.45 Higher faecal counts of C. perfringens are found in calves aged between one and ten days than in older animals.4

Clostridium perfringens types produce five major lethal toxins (alpha, beta, beta 2, epsilon and iota toxins) which are used for typing them into toxin types A, B, C, D, E and unassigned (Table 1).61, 82 Each one of these types also produces a number of minor, less lethal toxins, each of which has also been designated a letter of the Greek alphabet. Under certain in vivo and in vitro conditions the major and minor toxins are produced alone or in combination, depending on the specific type, and are responsible for the pathogenicity of the bacterium.79, 82, 90 These toxins, alone or in combination, are responsible for the various syndromes associated with this group of organisms. They cause disease as a consequence of not only their local effects on the intestinal tract, which may vary from insignificant to outspoken, but also the systemic effect of absorbed toxins — a situation referred to as enterotoxaemia.

The effects of these toxins, also referred to as virulence factors, are divided into three groups, namely: 80

  • the alpha and kappa toxins which are phospholipase C (lecithinase) and collagenase enzymes, respectively, hydrolyze substances essential to the integrity of cellular membranes or other body structures;
  • a group which includes the beta, epsilon and iota toxins, that act primarily on the vascular endothelium causing increased vascular permeability; and
  • a group which includes the haemolytic toxins such as the theta and delta toxins.

Clostridium perfringens is associated with a wide variety of diseases (Table 2) that affect most domestic animal species and humans and include enterotoxaemia, haemorrhagic and necrotic enteritis, traumatic wound infection, cellulitis and myonecrosis, post-abortion septicaemia, intravascular haemolysis, and puerperal infections.54, 82, 90, 95 It is one of the most widespread and potential pathogenic organisms in nature. Although small numbers of C. perfringens are present in a wide range of meats or products prepared from meat, it does not often play a role in spoilage. It is, however, one of the causes of food poisoning in humans.78, 79

Clostridium perfringens grows well on rabbit, human, ovine, bovine and equine blood agar at 35 to 37 °C in an anaerobic atmosphere. After 18 to 24 hours’ incubation, the colonies are 2 to 5mm in diameter, white or grey and translucent, with a glossy appearance, low convex, and round with edges that may vary from irregular/serrated in certain isolates to entire in most isolates. Pure cultures of C. perfringens frequently contain two or more colony forms, with aberrant forms sometimes occurring alongside the typical colony forms. On ovine, bovine, rabbit, and human blood agar, colonies are surrounded by a narrow zone of complete haemolysis caused by the theta toxin, around which is a wider zone of partial haemolysis caused by the alpha toxin. On horse blood agar, only the theta toxin is responsible for haemolysis. The alpha toxin has relatively little effect on horse and goat red blood cells.63, 79 Clostridium perfringens tolerates a wide temperature range when incubated and, although the optimal range is 35 to 37 °C, temperatures of 43 to 45 °C favour its growth when it occurs in mixed cultures. Growth takes place over a pH range varying from 5,5 to 8,0.

Table 1  The major lethal toxins of the different types of C. perfringens. (Adapted from Smith & Williams, 198482)

C. PERFRINGENS TYPE TOXIN TYPE
ALPHA BETA BETA-2 EPSILON IOTA
A + - - - -
B + + - + -
C + + - - -
D + + - - -
E + - - + -
Unassigned + - + - -

Table 2  Diseases associated with C. perfringens in humans and animals

C. PERFRINGENS TYPE DESCRIPTION OF DISEASE ANIMAL AFFECTED
  WOUND INFECTION  
A
A
A
A


A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
B-2
C
C
C
C
C
C
D
D
D
Gas gangrene, myonecrosis
False blackleg
Gangrenous mastitis
Post-abortion septicaemia

To see the full item, subscribe today:

Individual subscription
Individual subscription to all resources R1200.00 Subscribe now

All prices shown in South African Rand.

Sign in to Anipedia






Forgot your username or password? Click here.

Not registered yet? Sign up now.

Start using Anipedia today, by creating your account.

Register now